Bubonic Plague

  • Created by: Melissa Phachanhla
  • Completed: December 2015
  • Media:Adobe Photoshop, Adobe Illustrator
  • Client:Prof. Dave Mazierski, Dr. John Wong

Project Info:

While completing a course with Dr. Wong to learn about a myriad of various pathologies, we completed literary research on a pathological disorder of our choice. We regularly met with both Dr. Wong and Prof. Mazierski to discuss the accuracy of the images and the drawings.

With the recent rise of plague cases in the US, it seemed like an interesting and relevant topic to explore. The plague is a devastating disease and has played a large part in human history.

  1. CDC. (2012). Plague Symptems. Retrieved from http://www.cdc.gov/plague/symptoms/
  2. Chanteau, S., Ratsitorahina, M., Rahalison, L., Rasoamanana, B., and Chan, F. (2000). Current epidemiology of human plague in Madagascar. Microbes and Infection, 2, 25–31.
  3. Davis, K. M., and Isberg, R. R. (2014). Plague’s partners in crime. Immunity, 41(3), 347–9. http://doi.org/10.1016/j.immuni.2014.09.003
  4. Derbise, A., Chenal-Francisque, V., Pouillot, F., Fayolle, C., Prévost, M.-C., Médigue, C., … Carniel, E. (2007). A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Molecular Microbiology, 63(4), 1145–57. http://doi.org/10.1111/j.1365-2958.2006.05570.x
  5. Dziarski, R. (2006). Deadly plague versus mild-mannered TLR4. Nature, 7(10), 1017–1019. Retrieved from http://www.nature.com/ni/journal/v7/n10/full/ni1006-1017.html
  6. Grabenstein, J. P., Fukuto, H. S., Palmer, L. E., and Bliska, J. B. (2006). Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infection and Immunity, 74(7), 3727–41. http://doi.org/10.1128/IAI.00255-06
  7. Heroven, A. K., and Dersch, P. (2014). Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Frontiers in Cellular and Infection Microbiology, 4(October), 146. http://doi.org/10.3389/fcimb.2014.00146
  8. Hinnebusch, B. J., Jarrett, C. O., Callison, J. a, Gardner, D., Buchanan, S. K., and Plano, G. V. (2011). Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infection and Immunity, 79(12), 4984–9. http://doi.org/10.1128/IAI.05307-11
  9. Ke, Y., Chen, Z., and Yang, R. (2013). Yersinia pestis: mechanisms of entry into and resistance to the host cell. Frontiers in Cellular and Infection Microbiology, 3(December), 106. http://doi.org/10.3389/fcimb.2013.00106
  10. Knodler, L. A., Celli, J., and Finlay, B. B. (2001). PATHOGENIC TRICKERY : DECEPTION OF HOST CELL PROCESSES. Nature Reviews, 2(August), 578–588. Retrieved from http://www.nature.com/nrm/journal/v2/n8/full/nrm0801_578a.html
  11. Lawrenz, M. B. (2010). Model systems to study plague pathogenesis and develop new therapeutics. Frontiers in Microbiology, 1(November), 119. http://doi.org/10.3389/fmicb.2010.00119
  12. Li, B., and Yang, R. (2008). Interaction between Yersinia pestis and the host immune system. Infection and Immunity, 76(5), 1804–11. http://doi.org/10.1128/IAI.01517-07
  13. Lindler, L. E., and Tall, B. D. (1993). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracelluiar association with macrophages, 8, 311–324.
  14. Pujol, C., and Bliska, J. B. (2005). Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clinical Immunology (Orlando, Fla.), 114(3), 216–26. http://doi.org/10.1016/j.clim.2004.07.013
  15. St John, A. L., Ang, W. X. G., Huang, M.-N., Kunder, C. a, Chan, E. W., Gunn, M. D., & Abraham, S. N. (2014). S1P-Dependent trafficking of intracellular yersinia pestis through lymph nodes establishes Buboes and systemic infection. Immunity, 41(3), 440–50. http://doi.org/10.1016/j.immuni.2014.07.013